Arterial intimal-medial permeability and coevolving structural responses to defined shear-stress exposures

Author:

Fry Donald L.1

Affiliation:

1. Laboratory of Experimental Atherosclerosis, Departments of Internal Medicine and Pathology, College of Medicine, Ohio State University, Columbus, Ohio 43210

Abstract

The purpose of this research was to examine the evolution of arterial shear stress-induced intimal albumin permeability and coevolving structural responses in swine arteries. Uniform laminar shear-stress responses were compared with those of a simulated “flow separation” stress field. These fields were created using specially designed flow-configuring devices in an experimentally controlled, metabolically supported, ex vivo thoracoabdominal aorta preparation. The Evans blue dye-albumin complex (EBD-alb) permeability patterns that evolved were measured by a reflectometric method. The corresponding tissue structural responses were evaluated by histological, immunostaining, and ultrastructural microscopic techniques. It was shown that when a previously in vivo-adapted artery is challenged by a new mechanochemical environment, it undergoes a sequence of adaptive processes over the ensuing 95 h. Intimal regions of laminar shear-stress exposure (∼16 dyn/cm2) responded initially (23 h) with an increase in permeability. With continued stress exposure, intimal-medial structural changes ensued that restored the artery to a physiologically normal permeability. Over this same period, adjacent endothelial regions exposed to simulated flow separation stress fields (∼0.03–0.27 dyn/cm2) developed early and progressively increasing permeability. This was associated with formation of local intimal edema, loss of intimal matrix material, and development of distinctively raised, gelatinous-appearing intimal lesions having a potentially preatheromatous architecture.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3