Affiliation:
1. Laboratory of Experimental Atherosclerosis, Departments of Internal Medicine and Pathology, College of Medicine, Ohio State University, Columbus, Ohio 43210
Abstract
The purpose of this research was to examine the evolution of arterial shear stress-induced intimal albumin permeability and coevolving structural responses in swine arteries. Uniform laminar shear-stress responses were compared with those of a simulated “flow separation” stress field. These fields were created using specially designed flow-configuring devices in an experimentally controlled, metabolically supported, ex vivo thoracoabdominal aorta preparation. The Evans blue dye-albumin complex (EBD-alb) permeability patterns that evolved were measured by a reflectometric method. The corresponding tissue structural responses were evaluated by histological, immunostaining, and ultrastructural microscopic techniques. It was shown that when a previously in vivo-adapted artery is challenged by a new mechanochemical environment, it undergoes a sequence of adaptive processes over the ensuing 95 h. Intimal regions of laminar shear-stress exposure (∼16 dyn/cm2) responded initially (23 h) with an increase in permeability. With continued stress exposure, intimal-medial structural changes ensued that restored the artery to a physiologically normal permeability. Over this same period, adjacent endothelial regions exposed to simulated flow separation stress fields (∼0.03–0.27 dyn/cm2) developed early and progressively increasing permeability. This was associated with formation of local intimal edema, loss of intimal matrix material, and development of distinctively raised, gelatinous-appearing intimal lesions having a potentially preatheromatous architecture.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献