Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria

Author:

Asimakis G. K.,Sordahl L. A.

Abstract

Isolated rabbit heart mitochondria were incubated with varying amounts of inorganic pyrophosphate in 250 mM sucrose to specifically decrease the pool size of endogenous adenine nucleotides. The endogenous adenine nucleotide content decreased by as much as 80% as a result of this treatment. Phosphorylating respiration (state 3) declined from about 340 to 180 nAtoms O . min-1 . mg protein-1 over the full range of intramitochondrial adenine nucleotides measured (approx 7.5-1.5 nmol/mg protein). Uncoupled and nonphosphorylating (state 4) rates of respiration were not greatly affected by adenine nucleotide depletion. Respiratory activity of the adenine nucleotide-depleted mitochondria was enhanced by addition of exogenous adenosine 5'-triphosphate (ATP). Partial depletion (approx 40%) of the intramitochondrial adenine nucleotides resulted in an impaired ability of heart mitochondria to retain Ca2+. Premature Ca2+ efflux was associated with organelle swelling and altered energy coupling. Exogenous ATP or adenosine 5'-diphosphate (ADP) added prior to Ca2+ efflux restored Ca2+ retention in these mitochondria. Atractyloside inhibited the restoration of Ca2+ retention. This study indicates a significant role for endogenous adenine nucleotides in maintaining oxidative phosphorylation and Ca2+ transport in heart mitochondria. The results are discussed with regard to significance in ischemic heart damage.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3