Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells

Author:

Braam Branko,de Roos Remmert,Dijk Adele,Boer Peter,Post Jan Andries,Kemmeren Patrick P. C. W.,Holstege Frank C. P.,Bluysen Hans A. R.,Koomans Hein A.

Abstract

The present study tested the hypothesis that acute increases in nitric oxide (NO) exert substantial influences on gene transcription in endothelial cells (ECs) via guanylyl cyclase (GC). Human umbilical veins ECs (HUVECs) were exposed to 0.1, 1, and 10 mM of sodium nitroprusside (SNP) for 4 h and to 1 mM SNP or 250 μM of ( Z)-1[ N-(2-aminoethyl)- N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 2, 4, 8, and 24 h. Also, cells were exposed to DETA-NONOate in the presence and absence of the GC inhibitor 1 H-[1,2,4]oxadiazolo-[4,3- a]quinoxalin-1-one (ODQ; 10 μM) for 4 h. RNA was isolated, reverse transcribed, Cy3 and Cy5 labeled, and analyzed using cDNA microarrays. Increasing doses of SNP predominantly depressed gene expression in HUVECs. Gene function was related to growth, adhesion, and cell structure. DETA-NONOate evoked a wave of expression changes (maximum at 4 h), with a remarkable downregulation of the transcription factors MSX1, RELB, and Egr-1. Both SNP- and DETA-NONOate-induced gene expression had faded after 24 h, despite continued elevation of cGMP in the medium. Coadministration of ODQ decreased many, but not all, of the transcriptional responses to DETA-NONOate. NO pronouncedly depressed EC gene expression, in particular of transcription factors. The observation that many, but not all, transcriptional changes induced by NO could be inhibited by inhibition of GC indicates the presence of GC-independent NO actions on gene expression. Thus EC gene expression responds to NO; however, the transcriptional response fades during prolonged exposure. This could allow the EC to respond to increased shear, without vigorous changes in gene expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3