A new method for assessing arteriolar diameter and hemodynamic resistance using image analysis of vessel lumen

Author:

Tyml Karel12,Anderson Donald2,Lidington Darcy12,Ladak Hanif M.324

Affiliation:

1. A. C. Burton Laboratory, Lawson Health Research Institute,

2. Department of Medical Biophysics, and

3. Imaging Research Labs, Robarts Research Institute,

4. Department of Electrical and Computer Engineering, University of Western Ontario, London, Ontario, Canada NCA 5C1

Abstract

To characterize the nonuniform diameter response in a blood vessel after a given stimulus (e.g., arteriolar conducted response), frequent serial diameter measurements along the vessel length are required. We used an advanced image analysis algorithm (the “discrete dynamic contour”) to develop a quick, reliable method for serial luminal diameter measurements along the arteriole visualized by intravital video microscopy. With the use of digitized images of the arteriole and computer graphics, the method required an operator to mark the image of the two inner edges of the arteriole at several places along the arteriolar length. The algorithm then “filled in” these marks to generate two continuous contours that “hugged” these edges. A computer routine used these contours to determine luminal diameters every 20 μm. Based on these diameters and on Poiseuille's law, the routine also estimated the hemodynamic resistance of the blood vessel. To demonstrate the usefulness of the method, we examined the character of spatial decay of KCl-induced conducted constriction along ∼500-μm-long arteriolar segments and the KCl-induced increase in hemodynamic resistance computed for these segments. The decay was only modestly fitted by a simple exponential, and the computed increase in resistance (i.e., 5- to 70-fold) was only modestly predicted by resistance increase based on our mathematical model involving measurements at two arteriolar sites (Tyml K, Wang X, Lidington D, and Oullette Y. Am J Physiol Heart Circ Physiol 281: H1397–H1406, 2001). We conclude that our method provides quick, reliable serial diameter measurements. Because the change in hemodynamic resistance could serve as a sensitive index of conducted response, use of this index in studies of conducted response may lead to new mechanistic insights on the response.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3