Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility

Author:

Korneva Arina1,Humphrey Jay D.12ORCID

Affiliation:

1. Department of Biomedical Engineering, Yale University, New Haven, Connecticut

2. Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut

Abstract

Intramural cells are responsible for establishing, maintaining, and restoring the functional capability and structural integrity of the aortic wall. In response to hypertensive loading, these cells tend to increase wall content via extracellular matrix turnover in an attempt to return wall stress and/or material stiffness toward homeostatic values despite the elevated pressure. Using a common rodent model of induced hypertension, we found marked mouse-to-mouse differences in thoracic aortic remodeling over 2–4 wk of pressure elevation, with mechanoadaptation in some but gross maladaptation in most mice despite the same experimental conditions and overall genetic background. Consistent with our hypothesis, we also found a strong correlation between maladaptive aortic remodeling and a dysfunctional ability of the vessel to vasoconstrict, with maladaptation often evidenced by marked adventitial fibrosis. Remarkably, mouse-to-mouse variability did not correlate with the degree or duration of pressure elevation over the 2- to 4-wk study period. These findings suggest both a need to study together the structure, mechanical properties, and function across layers of the wall when assessing aortic health and a need for caution in using common statistical comparisons across small seemingly well-defined groups that may mask important underlying individual responses, an area of investigation that demands increasing attention as we move toward an era of precision diagnosis and patient care. NEW & NOTEWORTHY There are three primary findings. Marked mouse-to-mouse differences exist in large vessel hypertensive remodeling in an otherwise equivalent cohort of animals. The degree of maladaptation correlates strongly with decreases in smooth muscle contractile capacity. Finally, short-term maladaptive remodeling is independent of the precise degree or duration of the pressure elevation provided that thresholds are exceeded. Therapeutic targets should thus be personalized and focus on both layer-to-layer interactions and early interventions.

Funder

NIH

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3