Is hemoglobin in hemoglobin vesicles infused for isovolemic hemodilution necessary to improve oxygenation in critically ischemic hamster skin?

Author:

Plock Jan A.,Contaldo Claudio,Sakai Hiromi,Tsuchida Eishun,Leunig Michael,Banic Andrej,Menger Michael D.,Erni Dominique

Abstract

The aim of this study was to test the influence of hemoglobin, encapsulated in phospholipid vesicles as an oxygen carrier, given in the course of isovolemic hemodilution to improve oxygenation in critically ischemic hamster flap tissue. Capillary hemodynamics and macromolecular leakage were investigated with intravital microscopy and analyzed off-line with the CapImage software. Partial tissue oxygen tension was measured with fluorescence quenching electrodes. The occurrence of apoptosis was assessed with the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Vesicles with (HbV) or without (V) encapsulated Hb were suspended in 6% hydroxyethyl starch (HES) used for the 33% blood exchange. In the ischemic tissue, hemodilution led to an increase in functional capillary density by 31% for HES ( P < 0.01 vs. other groups), 66% for V-HES, and 62% for HbV-HES (all P < 0.01 vs. control). Capillary diameters behaved inversely proportional to capillary microhemodynamics. The 20% increase in macromolecular leakage found over time in control animals was completely abolished in the vesicles groups ( P < 0.01) but not with HES. Oxygen tension was improved from 10.7 to 16.0 mmHg after HbV-HES ( P < 0.01 vs. baseline and other groups). Compared with the other groups, apoptosis was significantly reduced after HbV-HES ( P < 0.01). We conclude that the encapsulation of Hb was essential to attenuate hypoxia and subsequent cell death in the critically ischemic tissue. However, the effect was partly attributed to the rheological changes exerted by the vesicles.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3