Attenuation of fatty acid-induced apoptosis by low-dose alcohol in neonatal rat cardiomyocytes

Author:

Sparagna Genevieve C.,Jones Chad E.,Hickson-Bick Diane L. M.

Abstract

Moderate alcohol consumption has been shown to reduce the morbidity and mortality from coronary heart disease. Ethanol elicits its protective effects via mechanisms that include activation of protein kinases linked to growth and survival. Our results in isolated neonatal rat cardiomyocytes demonstrate that repeated short-term, low-dose exposure to ethanol is sufficient to activate the growth and/or survival pathways that involve PKC-ε, Akt, and AMP-activated kinase. In addition, we are able to induce apoptosis in these cardiomyocytes using the saturated fatty acid palmitate. Pretreatment with multiple low-dose ethanol exposures attenuates the apoptotic response to palmitate. This protection is manifested by a reduction in caspase-3-like activity, decreased mitochondrial loss of cytochrome c, and decreased loss of the mitochondrial lipid cardiolipin. We previously reported that incubation of cardiomyocytes with palmitate results in decreased production of reactive oxygen species compared with cells incubated with the nonapoptotic fatty acid oleate. In the present study, we observed an increase in the production of superoxide and the rates of fatty acid oxidation in cardiomyocytes pretreated with ethanol and then exposed to fatty acids. The level of superoxide production in palmitate-treated cells returns to the levels observed in oleate-treated cells after ethanol exposure. Taken together with our observed increase in AMP-activated kinase activity, we propose that ethanol pretreatments stimulate oxidative metabolism and electron transport within cardiomyocytes. We postulate that stimulation of palmitate metabolism may protect cardiomyocytes by preventing accumulation of unsaturated precursor molecules of cardiolipin synthesis. Maintaining cardiolipin levels may be sufficient to prevent the mitochondrial loss of cytochrome c and the downstream activation of caspases.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3