CaMKII inhibition in heart failure, beneficial, harmful, or both

Author:

Cheng Jun1,Xu Lin1,Lai Dongwu1,Guilbert Arnaud1,Lim Hyun Joung1,Keskanokwong Thitima1,Wang Yanggan1

Affiliation:

1. Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia

Abstract

Calmodulin-dependent protein kinase II (CaMKII) has been proposed to be a therapeutic target for heart failure (HF). However, the cardiac effect of chronic CaMKII inhibition in HF has not been well understood. We have tested alterations of Ca2+ handling, excitation-contraction coupling, and in vivo β-adrenergic regulation in pressure-overload HF mice with CaMKIIδ knockout (KO). HF was produced in wild-type (WT) and KO mice 1 wk after severe thoracic aortic banding (sTAB) with a continuous left ventricle (LV) dilation and reduction of ejection fraction for up to 3 wk postbanding. Cardiac hypertrophy was similar between WT HF and KO HF mice. However, KO HF mice manifested exacerbation of diastolic function and reduction in cardiac reserve to β-adrenergic stimulation. Compared with WT HF, L-type calcium channel current ( ICa) density in KO HF LV was decreased without changes in ICa activation and inactivation kinetics, whereas ICa recovery from inactivation was accelerated and Ca2+-dependent ICa facilitation, a positive staircase blunted in WT HF, was recovered. However, ICa response to isoproterenol was reduced. KO HF myocytes manifested dramatic decrease in sarcoplasmic reticulum (SR) Ca2+ leak and slowed cytostolic Ca2+ concentration decline. Sarcomere shortening was increased, but relaxation was slowed. In addition, an increase in myofilament sensitivity to Ca2+ and the slow skeletal muscle troponin I-to-cardiac troponin I ratio and interstitial fibrosis and a decrease in Na/Ca exchange function and myocyte apoptosis were observed in KO HF LV. CaMKIIδ KO cannot suppress severe pressure-overload-induced HF. Although cellular contractility is improved, it reduces in vivo cardiac reserve to β-adrenergic regulation and deteriorates diastolic function. Our findings challenge the strategy of CaMKII inhibition in HF.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3