Affiliation:
1. Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca; and
2. Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
Abstract
A growing body of evidence indicates that a number of common complex diseases, including hypertension, heart failure, and obesity, are characterized by alterations in central neurocardiovascular regulation. However, our understanding of how changes within the central nervous system contribute to the development and progression of these and other diseases remains unclear. As with many areas of cardiovascular research, the mouse has emerged as a key species for investigations of neuroregulatory processes because of its amenability to highly specific genetic manipulations. In parallel with the development of increasingly sophisticated murine models has come the miniaturization and advancement in methodologies for in vivo assessment of neurocardiovascular end points in the mouse. The following brief review will focus on a number of key direct and indirect experimental approaches currently in use, including measurement of arterial blood pressure, assessment of cardiovascular autonomic control, and evaluation of arterial baroreflex function. The advantages and limitations of each methodology are highlighted to allow for a critical evaluation by the reader when considering these approaches.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献