The importance of biological sex in cardiac cachexia

Author:

Holder Ethan R.1,Alibhai Faisal J.2ORCID,Caudle Samantha L.1,McDermott John C.3,Tobin Stephanie W.1ORCID

Affiliation:

1. Trent University, Peterborough, Ontario, Canada

2. University Health Network, Toronto, Ontario, Canada

3. York University, Toronto, Ontario, Canada

Abstract

Cardiac cachexia is a catabolic muscle-wasting syndrome observed in approximately 1 in 10 patients with heart failure. Increased skeletal muscle atrophy leads to frailty and limits mobility, which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with comorbidities related to diabetes, renal failure, and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure, as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in part sex-dependent, the diagnosis and treatment of cachexia in patients with heart failure may depend on a comprehensive examination of how these organs interact. In this review, we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. In addition, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.

Funder

Trent University

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sex as a biological variable for cardiovascular physiology;American Journal of Physiology-Heart and Circulatory Physiology;2024-03-01

2. Cardiac function, structural, and electrical remodeling by microgravity exposure;American Journal of Physiology-Heart and Circulatory Physiology;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3