Author:
Brown Maria,McGuinness Michael,Wright Terry,Ren Xiaoping,Wang Yang,Boivin Gregory P.,Hahn Harvey,Feldman Arthur M.,Jones W. Keith
Abstract
The role of NF-κB in cardiac physiology and pathophysiology has been difficult to delineate due to the inability to specifically block NF-κB signaling in the heart. Cardiac-specific transgenic models have recently been developed that repress NF-κB activation by preventing phosphorylation at specific serine residues of the inhibitory κB (IκB) protein isoform IκBα. However, these models are unable to completely block NF-κB because of a second signaling pathway that regulates NF-κB function via Tyr42 phosphorylation of IκBα. We report the development of transgenic (3M) mouse lines that express the mutant IκBα(S32A,S36A,Y42F)in a cardiac-specific manner. NF-κB activation in cardiomyopathic TNF-1.6 mice is completely blocked by the 3M transgene but only partially blocked (70–80%) by the previously described double-mutant 2M [IκBα(S32A,S36A)] transgene, which demonstrates the action of two proximal pathways for NF-κB activation in TNF-α-induced cardiomyopathy. In contrast, after acute stimuli including administration of TNF-α and ischemia-reperfusion (I/R), NF-κB activation is blocked in both 2M and 3M transgenic mice. This result suggests that phosphorylation of the regulatory Ser32 and Ser36 predominantly mediates NF-κB activation in these situations. We show that infarct size after I/R is reduced by 70% in 3M transgenic mice, which conclusively demonstrates that NF-κB is involved in I/R injury. In summary, we have engineered novel transgenic mice that allow us to distinguish two major proximal pathways for NF-κB activation. Our results demonstrate that the serine and tyrosine phosphorylation pathways are differentially activated during different pathophysiological processes (cardiomyopathy and I/R injury) and that NF-κB contributes to infarct development after I/R.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献