Cardiac-specific blockade of NF-κB in cardiac pathophysiology: differences between acute and chronic stimuli in vivo

Author:

Brown Maria,McGuinness Michael,Wright Terry,Ren Xiaoping,Wang Yang,Boivin Gregory P.,Hahn Harvey,Feldman Arthur M.,Jones W. Keith

Abstract

The role of NF-κB in cardiac physiology and pathophysiology has been difficult to delineate due to the inability to specifically block NF-κB signaling in the heart. Cardiac-specific transgenic models have recently been developed that repress NF-κB activation by preventing phosphorylation at specific serine residues of the inhibitory κB (IκB) protein isoform IκBα. However, these models are unable to completely block NF-κB because of a second signaling pathway that regulates NF-κB function via Tyr42 phosphorylation of IκBα. We report the development of transgenic (3M) mouse lines that express the mutant IκBα(S32A,S36A,Y42F)in a cardiac-specific manner. NF-κB activation in cardiomyopathic TNF-1.6 mice is completely blocked by the 3M transgene but only partially blocked (70–80%) by the previously described double-mutant 2M [IκBα(S32A,S36A)] transgene, which demonstrates the action of two proximal pathways for NF-κB activation in TNF-α-induced cardiomyopathy. In contrast, after acute stimuli including administration of TNF-α and ischemia-reperfusion (I/R), NF-κB activation is blocked in both 2M and 3M transgenic mice. This result suggests that phosphorylation of the regulatory Ser32 and Ser36 predominantly mediates NF-κB activation in these situations. We show that infarct size after I/R is reduced by 70% in 3M transgenic mice, which conclusively demonstrates that NF-κB is involved in I/R injury. In summary, we have engineered novel transgenic mice that allow us to distinguish two major proximal pathways for NF-κB activation. Our results demonstrate that the serine and tyrosine phosphorylation pathways are differentially activated during different pathophysiological processes (cardiomyopathy and I/R injury) and that NF-κB contributes to infarct development after I/R.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3