Interleukin-10 counteracts impaired endothelium-dependent relaxation induced by ANG II in murine aortic rings

Author:

Zemse Saiprasad M.,Hilgers Rob H. P.,Webb R. Clinton

Abstract

ANG II stimulates the production of reactive oxygen species and activates proinflammatory cytokines leading to endothelial dysfunction. We hypothesized that the anti-inflammatory cytokine IL-10 counteracts the impairment in endothelium-dependent ACh relaxation caused by ANG II. Aortic rings of C57BL/6 mice were incubated in DMEM in the presence of vehicle (deionized H2O), ANG II (100 nmol/l), recombinant mouse IL-10 (300 ng/ml), or both ANG II and IL-10 for 22 h at 37°C. After incubation, rings were mounted in a wire myograph to assess endothelium-dependent vasorelaxation to cumulative concentrations of ACh. Overnight exposure of aortic rings to ANG II resulted in blunted ACh-induced vasorelaxation compared with that shown in untreated rings (maximal response = 44 ± 3% vs. 64 ± 3%, respectively; P < 0.05). IL-10 treatment significantly restored this impairment in relaxation (63 ± 2%). In addition, the NADPH oxidase inhibitor apocynin restored the impairment in relaxation (maximal response = 76 ± 3%). Western blotting showed increased gp91 phox expression (a subunit of NADPH oxidase) in response to ANG II. Vessels treated with a combination of ANG II and IL-10 showed decreased expression of gp91 phox. Immunohistochemical analysis showed increased gp91 phox expression in ANG II-treated vessels compared with those treated with combined ANG II and IL-10. We found that the anti-inflammatory cytokine IL-10 prevents impairment in endothelium-dependent vasorelaxation in response to long-term incubation with ANG II via decreasing NADPH oxidase expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3