Structural adaptation increases predicted perfusion capacity after vessel obstruction in arteriolar arcade network of pig skeletal muscle

Author:

Gruionu Gabriel,Hoying James B.,Gruionu Lucian G.,Laughlin M. Harold,Secomb Timothy W.

Abstract

Arteriolar arcades provide alternate pathways for blood flow after obstruction of arteries or arterioles such as occurs in stroke and coronary and peripheral vascular disease. When obstruction is prolonged, remaining vessels adjust their diameters chronically in response to altered hemodynamic and metabolic conditions. Here, the effectiveness of arcades in maintaining perfusion both immediately following obstruction and after structural adaptation was examined. Morphometric data from a vascular casting of the pig triceps brachii muscle and published data were used to develop a computational model for the hemodynamics and structural adaptation of the arcade network between two feed artery branches, FA1 and FA2. The predicted total flow to capillaries (Q̇TA) in the region initially supplied by FA2 decreased to 26% of the normal value immediately after FA2 obstruction but was restored to 78% of the normal value after adaptation. After obstruction of 1–10 randomly selected arcade segments, Q̇TAwas on average 18% higher in the arcade network than in a corresponding two-tree network without arcades. Structural adaptation increased Q̇TAby an additional 16% in the arcade network but had almost no effect in the two-tree network. These results indicate that arcades can partially maintain blood flow after vascular blockage and that this effect is substantially enhanced by structural adaptation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3