Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation

Author:

Chaytor Andrew T.1,Taylor Hannah J.1,Griffith Tudor M.1

Affiliation:

1. Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom

Abstract

We have compared the mechanisms that contribute to endothelium-derived hyperpolarizing factor (EDHF)-type responses induced by ACh and the Ca2+ ionophore A-23187 in the rabbit iliac artery. Relaxations to both agents were associated with ∼1.5-fold elevations in smooth muscle cAMP levels and were attenuated by the adenylyl cyclase inhibitor 2′,5′-dideoxyadenosine (DDA) and potentiated by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Mechanical responses were inhibited by coadministration of the Ca2+-activated K+channel blockers apamin and charybdotoxin, both in the absence and presence of IBMX, but were unaffected by blockade of ATP-sensitive K+ channels with the sulphonylurea glibenclamide. Relaxations and elevations in cAMP evoked by ACh were abolished by 18α-glycyrrhetinic acid, which disrupts gap junction plaques, whereas the corresponding responses to A-23187 were unaffected by this agent. Consistently, in “sandwich” bioassay experiments, A-23187, but not ACh, elicited extracellular release of a factor that evoked relaxations that were inhibited by DDA and potentiated by IBMX. These findings provide evidence that EDHF-type relaxations of rabbit iliac arteries evoked by ACh and A-23187 depend on cAMP accumulation in smooth muscle, but involve signaling via myoendothelial gap junctions and the extracellular space, respectively.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3