Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension

Author:

Touyz Rhian M.

Abstract

Magnesium, an essential intracellular cation, is critically involved in many biochemical reactions involved in the regulation of vascular tone and integrity. Decreased magnesium concentration has been implicated in altered vascular reactivity, endothelial dysfunction, vascular inflammation, and structural remodeling, processes important in vascular changes and target organ damage associated with hypertension. Until recently, very little was known about mechanisms regulating cellular magnesium homeostasis, and processes controlling transmembrane magnesium transport had been demonstrated only at the functional level. Two cation channels of the transient receptor potential melastatin (TRPM) cation channel family have now been identified as magnesium transporters, TRPM6 and TRPM7. These unique proteins, termed chanzymes because they possess a channel and a kinase domain, are differentially expressed, with TRPM6 being found primarily in epithelial cells and TRPM7 occurring ubiquitously. Vascular TRPM7 is modulated by vasoactive agents, pressure, stretch, and osmotic changes and may be a novel mechanotransducer. In addition to its magnesium transporter function, TRPM7 has been implicated as a signaling kinase involved in vascular smooth muscle cell growth, apoptosis, adhesion, contraction, cytoskeletal organization, and migration, important processes involved in vascular remodeling associated with hypertension and other vascular diseases. Emerging evidence suggests that vascular TRPM7 function may be altered in hypertension. This review discusses the importance of magnesium in vascular biology and implications in hypertension and highlights the transport systems, particularly TRPM6 and TRPM7, which may play a role in the control of vascular magnesium homeostasis. Since the recent identification and characterization of Mg2+-selective transporters, there has been enormous interest in the field. However, there is still a paucity of information, and much research is needed to clarify the exact mechanisms of magnesium regulation in the cardiovascular system and the implications of aberrant transmembrane magnesium transport in the pathogenesis of hypertension and other vascular diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3