Author:
Gao Xue,Zhang Hanrui,Belmadani Souad,Wu Junxi,Xu Xiangbin,Elford Howard,Potter Barry J.,Zhang Cuihua
Abstract
We hypothesized that neutralization of TNF-α at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-α neutralizing antibodies at the time of reperfusion. I/R elevated TNF-α expression (mRNA and protein), whereas administration of anti-TNF-α before reperfusion attenuated TNF-α expression. We detected TNF-α expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-α at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-α before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-α are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-α expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献