Oxygen regulation of arterial smooth muscle cell proliferation and survival

Author:

Ray Julie Basu,Arab Sara,Deng Yupu,Liu Peter,Penn Linda,Courtman David W.,Ward Michael E.

Abstract

The purpose of this study was to determine if hypoxia elicits different proliferative and apoptotic responses in systemic arterial smooth muscle cells incubated under conditions that do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In human aortic smooth muscle cells (HASMCs) incubated at 3% O2, proliferation and progression through the G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptotic cell death, and is associated with mitochondrial membrane depolarization and reduced cellular ATP levels. In aorta and mesenteric artery from rats exposed to hypoxia (10% O2, 48 h), both proliferation and apoptosis are increased, as are medial nuclear density and smooth muscle cell content. Although nuclear levels of hypoxia-inducible factor 1-α (HIF-1α) are increased to a similar extent in HASMCs incubated at 1 and 3% O2, expression of tumor protein p53, its transcriptional target p21, as well as their regulatory factors and downstream effectors, are differentially affected under these two conditions, suggesting that the bidirectional effects of hypoxia are mediated by this pathway. We conclude that hypoxia induces a state of enhanced cell turnover through increased rates of both smooth muscle cell proliferation and death. This confers the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or the formation of abnormal vascular structures.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3