Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances α1D-adrenergic receptor constriction

Author:

Cohn Heather Irina,Harris David M.,Pesant Stephanie,Pfeiffer Michael,Zhou Rui-Hai,Koch Walter J.,Dorn Gerald W.,Eckhart Andrea D.

Abstract

G protein-coupled receptor kinase 2 (GRK2) is a serine/theorinine kinase that phosphorylates and desensitizes agonist-bound G protein-coupled receptors. GRK2 is increased in expression and activity in lymphocytes and vascular smooth muscle (VSM) in human hypertension and animal models of the disease. Inhibition of GRK2 using the carboxyl-terminal portion of the protein (GRK2ct) has been an effective tool to restore compromised β-adrenergic receptor (AR) function in heart failure and improve outcome. A well-characterized dysfunction in hypertension is attenuation of βAR-mediated vasodilation. Therefore, we tested the role of inhibition of GRK2 using GRK2ct or VSM-selective GRK2 gene ablation in a renal artery stenosis model of elevated blood pressure (BP) [the two-kidney, one-clip (2K1C) model]. Use of the 2K1C model resulted in a 30% increase in conscious BP, a threefold increase in plasma norepinephrine levels, and a 50% increase in VSM GRK2 mRNA levels. BP remained increased despite VSM-specific GRK2 inhibition by either GRK2 knockout (GRK2KO) or peptide inhibition (GRK2ct). Although βAR-mediated dilation in vivo and in situ was enhanced, α1AR-mediated vasoconstriction was also increased. Further pharmacological experiments using α1AR antagonists revealed that GRK2 inhibition of expression (GRK2KO) or activity (GRK2ct) enhanced α1DAR vasoconstriction. This is the first study to suggest that VSM α1DARs are a GRK2 substrate in vivo.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3