Impaired function of aorta and perivascular adipose tissue in IL-18-deficient mice

Author:

Li Wen12,Jin Denan2,Takai Shinji2,Hayakawa Tetsu1,Ogata Jun3,Yamanishi Kyosuke4,Yamanishi Hiromichi3,Okamura Haruki1

Affiliation:

1. Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan

2. Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan

3. Hirakata General Hospital for Developmental Disorders, Hirakata, Japan

4. Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan

Abstract

IL-18 is ubiquitously produced by both hematopoietic and non-hematopoietic cells. The present study examined the thoracic aorta, including the surrounding perivascular adipose tissue (PVAT), of IL-18KO mice from functional and histological perspectives. IL-18KO mice exhibited raised blood pressure compared with wild-type mice. Echocardiographic examination showed a thickened vascular wall and narrowed vascular diameter of the aorta. Examination by the Magnus test demonstrated dysfunction of endothelial cells (ECs) in the IL-18KO thoracic aorta and impairment of the anticontractile function of IL-18KO PVAT. Histological examination showed no inflammatory lesions in the aorta but indicated progressive fibrosis in the vessel and conversion of PVAT from brown adipose tissue-like features to white adipose tissue-like features. Electron microscopic observation suggested several deformed mitochondria in the aorta and vacuole-like structures in ECs from IL-18KO mice. In addition, activity of complex IV was lower and production of reactive oxygen species was augmented in the mitochondria of IL-18KO aorta. Although expression of LC3 B was higher, rapamycin-induced autophagy flux was impaired in the IL-18KO PVAT. Moreover, Western blot analysis revealed that LAMP 1/2 was increased in IL-18KO PVAT, and measurement of cathepsin-D activity indicated decreased levels in IL-18KO PVAT. The IL-18KO thoracic aorta thus showed defects in physiological functions related to histological alterations, and the inflammasome/IL-18 system was suggested to play a protective role in cardiovascular cells, probably through quality control of mitochondria via promotion of autophagosome/autophagolysosome formation. NEW & NOTEWORTHY IL-18 deficiency caused aortic abnormalities in terms of morphology and functions in parallel with an accumulation of damaged mitochondria and anomalous turnover of protein complexes, such as PGC-1 and LAMP1 and -2 in PVAT. These findings suggested that IL-18 plays roles in maintaining the homeostasis of vessels and PVAT around the aorta, possibly by promoting autophagy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3