Histone acetyl transferases CBP and p300 are necessary for maintenance of renin cell identity and transformation of smooth muscle cells to the renin phenotype

Author:

Pentz Ellen Steward1,Cordaillat Magali1,Carretero Oscar A.2,Tucker Ana E.1,Sequeira Lopez Maria Luisa S.1,Gomez R. Ariel1

Affiliation:

1. Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia; and

2. Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan

Abstract

In response to a homeostatic threat circulating renin increases by increasing the number of cells expressing renin by dedifferentiation and re-expression of renin in arteriolar smooth muscle cells (aSMCs) that descended from cells that expressed renin in early life. However, the mechanisms that govern the maintenance and reacquisition of the renin phenotype are not well understood. The cAMP pathway is important for renin synthesis and release: the transcriptional effects are mediated by binding of cAMP responsive element binding protein with its co-activators, CBP and p300, to the cAMP response element in the renin promoter. We have shown previously that mice with conditional deletion of CBP and p300 (cKO) in renin cells had severely reduced renin expression in adult life. In this study we investigated when the loss of renin-expressing cells in the cKO occurred and found that the loss of renin expression becomes evident after differentiation of the kidney is completed during postnatal life. To determine whether CBP/p300 is necessary for re-expression of renin we subjected cKO mice to low sodium diet + captopril to induce retransformation of aSMCs to the renin phenotype. The cKO mice did not increase circulating renin, their renin mRNA and protein expression were greatly diminished compared with controls, and only a few aSMCs re-expressed renin. These studies underline the crucial importance of the CREB/CBP/p300 complex for the ability of renin cells to retain their cellular memory and regain renin expression, a fundamental survival mechanism, in response to a threat to homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3