Windkesselness of coronary arteries hampers assessment of human coronary wave speed by single-point technique

Author:

Kolyva Christina,Spaan Jos A. E.,Piek Jan J.,Siebes Maria

Abstract

A novel single-point technique to calculate local arterial wave speed ( SPc) has recently been presented and applied in healthy human coronary arteries at baseline flow. We investigated its applicability for conditions commonly encountered in the catheterization laboratory. Intracoronary pressure (Pd) and Doppler velocity ( U) were recorded in 29 patients at rest and during adenosine-induced hyperemia in a distal segment of a normal reference vessel and downstream of a single stenosis before and after revascularization. Conduit vessel tone was minimized with nitroglycerin. Microvascular resistance (MR) and SPc were calculated from Pd and U. In the reference vessel, SPc decreased from 21.5 m/s (SD 8.0) to 10.5 m/s (SD 4.1) after microvascular dilation ( P < 0.0001). SPc was substantially higher in the presence of a proximal stenosis and decreased from 34.4 m/s (SD 18.2) at rest to 27.5 m/s (SD 13.4) during hyperemia ( P < 0.0001), with a concomitant reduction in Pd by 20 mmHg and MR by 55.4%. The stent placement further reduced hyperemic MR by 26% and increased Pd by 26 mmHg but paradoxically decreased SPc to 13.1 m/s (SD 7.7) ( P < 0.0001). Changes in SPc correlated strongly with changes in MR ( P < 0.001) but were inversely related to changes in Pd ( P < 0.01). In conclusion, the single-point method yielded erroneous predictions of changes in coronary wave speed induced by a proximal stenosis and distal vasodilation and is therefore not appropriate for estimating local wave speed in coronary vessels. Our findings are well described by a lumped reservoir model reflecting the “windkesselness” of the coronary arteries.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3