A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle

Author:

Bondarenko Vladimir E.1,Bett Glenna C. L.1,Rasmusson Randall L.1

Affiliation:

1. Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, New York 14214

Abstract

We have developed a model of Ca2+ handling in ferret ventricular myocytes. This model includes a novel L-type Ca2+ channel, detailed intracellular Ca2+ movements, and graded Ca2+-induced Ca2+ release (CICR). The model successfully reproduces data from voltage-clamp experiments, including voltage- and time-dependent changes in intracellular Ca2+ concentration ([Ca2+]i), L-type Ca2+ channel current ( ICaL) inactivation and recovery kinetics, and Ca2+ sparks. The development of graded CICR is critically dependent on spatial heterogeneity and the physical arrangement of calcium channels in opposition to ryanodine-sensitive release channels. The model contains spatially distinct subsystems representing the subsarcolemmal regions where the junctional sarcoplasmic reticulum (SR) abuts the T-tubular membrane and where the L-type Ca2+ channels and SR ryanodine receptors (RyRs) are localized. There are eight different types of subsystems in our model, with between one and eight L-type Ca2+ channels distributed binomially. This model exhibits graded CICR and provides a quantitative description of Ca2+ dynamics not requiring Monte-Carlo simulations. Activation of RyRs and release of Ca2+ from the SR depend critically on Ca2+ entry through L-type Ca2+ channels. In turn, Ca2+ channel inactivation is critically dependent on the release of stored intracellular Ca2+. Inactivation of ICaL depends on both transmembrane voltage and local [Ca2+]i near the channel, which results in distinctive inactivation properties. The molecular mechanisms underlying many ICaL gating properties are unclear, but [Ca2+]i dynamics clearly play a fundamental role.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3