Reduced mitochondrial Ca2+ loading and improved functional recovery after ischemia-reperfusion injury in old vs. young guinea pig hearts

Author:

Rhodes Samhita S.12,Camara Amadou K. S.23,Heisner James S.2,Riess Matthias L.2435,Aldakkak Mohammed2,Stowe David F.2435

Affiliation:

1. School of Engineering, Padnos College of Engineering and Computing, Grand Valley State University, Grand Rapids, Michigan;

2. Departments of 2Anesthesiology Research and

3. Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee; and

4. Physiology, and

5. Research Service Veterans Affairs Medical Center, Milwaukee, Wisconsin

Abstract

Oxidative damage and impaired cytosolic Ca2+ concentration ([Ca2+]cyto) handling are associated with mitochondrial [Ca2+] ([Ca2+]mito) overload and depressed functional recovery after cardiac ischemia-reperfusion (I/R) injury. We hypothesized that hearts from old guinea pigs would demonstrate impaired [Ca2+]mito handling, poor functional recovery, and a more oxidized state after I/R injury compared with hearts from young guinea pigs. Hearts from young (∼4 wk) and old (>52 wk) guinea pigs were isolated and perfused with Krebs-Ringer solution (2.1 mM Ca2+ concentration at 37°C). Left ventricular pressure (LVP, mmHg) was measured with a balloon, and NADH, [Ca2+]mito (nM), and [Ca2+]cyto (nM) were measured by fluorescence with a fiber optic probe placed against the left ventricular free wall. After baseline (BL) measurements, hearts were subjected to 30 min global ischemia and 120 min reperfusion (REP). In old vs. young hearts we found: 1) percent infarct size was lower (27 ± 9 vs. 57 ± 2); 2) developed LVP (systolic-diastolic) was higher at 10 min (57 ± 11 vs. 29 ± 2) and 60 min (55 ± 10 vs. 32 ± 2) REP; 3) diastolic LVP was lower at 10 and 60 min REP (6 ± 3 vs. 29 ± 4 and 3 ± 3 vs. 21 ± 4 mmHg); 4) mean [Ca2+]cyto was higher during ischemia (837 ± 39 vs. 541 ± 39), but [Ca2+]mito was lower (545 ± 62 vs. 975 ± 38); 5) [Ca2+]mito was lower at 10 and 60 min REP (129 ± 2 vs. 293 ± 23 and 122 ± 2 vs. 234 ± 15); 6) reduced inotropic responses to dopamine and digoxin; and 7) NADH was elevated during ischemia in both groups and lower than BL during REP. Contrary to our stated hypotheses, old hearts showed reduced [Ca2+]mito, decreased infarction, and improved basal mechanical function after I/R injury compared with young hearts; no differences were noted in redox state due to age. In this model, aging-associated protection may be linked to limited [Ca2+]mito loading after I/R injury despite higher [Ca2+]cyto load during ischemia in old vs. young hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3