Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: implications for sustained elevation of vascular resistance

Author:

Zhang Jin,Hamlyn John M.,Karashima Eiji,Raina Hema,Mauban Joseph R. H.,Izuka Michelle,Berra-Romani Roberto,Zulian Alessandra,Wier W. Gil,Blaustein Mordecai P.

Abstract

Prolonged ouabain administration to normal rats causes sustained blood pressure (BP) elevation. This ouabain-induced hypertension (OH) has been attributed, in part, to the narrowing of third-order resistance arteries (∼320 μm internal diameter) as a result of collagen deposition in the artery media (see Ref. 6 ). Here we describe the structural and functional properties of fourth-order mesenteric small arteries from control and OH rats, including the effect of low-dose ouabain on myogenic tone in these arteries. Systolic BP in OH rats was 138 ± 3 versus 124 ± 4 mmHg in controls ( P < 0.01). Pressurized (70 mmHg) control and OH arteries, with only a single layer of myocytes, both had ∼165-μm internal diameters and ∼20-μm wall thicknesses. Even after fixation, despite vasoconstriction, the diameters and wall thicknesses did not differ between control and OH fourth-order arteries, whereas in third-order arteries, both parameters were significantly smaller in OH than in controls. Myogenic reactivity was significantly augmented in OH fourth-order arteries. Nevertheless, phenylephrine- (1 μM) and high K+-induced vasoconstrictions and acetylcholine-induced vasodilation were comparable in control and OH arteries. Vasoconstrictions induced by 5 μM phenylephrine and by 10 mM caffeine in Ca2+-free media indicated that releasable sarcoplasmic reticulum Ca2+ stores were normal in OH arteries. Importantly, 100 nM ouabain constricted both control and OH arteries by ∼26 μm, indicating that this response was not downregulated in OH rats. This maximal ouabain-induced constriction corresponds to a ∼90% increase in resistance to flow in these small arteries; thus ouabain at EC50 of ∼0.66 nM should raise resistance by ∼35%. We conclude that dynamic constriction in response to circulating nanomolar ouabain in small arteries likely makes a major contribution to the increased vascular tone and BP in OH rats.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3