Affiliation:
1. Department of Physiology, Osaka University Medical School, Japan.
Abstract
O2 transfer from the inside to the outside of single microvessels in the resting and secretin-stimulated exocrine pancreas of rats was investigated by dual-spot microspectroscopy. Measurements of intravascular hemoglobin (Hb) concentration, O2 saturation of Hb, and velocity of flowing red blood cells were carried out in single microvessels at the edge of the exocrine pancreas of anesthetized rats. The rate of O2 release (Ro2) from a single microvessel wall was constant [approximately 2 nmol.cm-2.s-1] over a wide range of oxyhemoglobin inflow ([HbO2] inflow; 200-700 fmol/s) but decreased almost linearly with an [HbO2] inflow < 200 fmol/s, where [HbO2] inflow is defined as the product of inflowing oxyhemoglobin concentration ([HbO2]) and blood flow rate. When the exocrine pancreas was stimulated with secretin either by superfusion (> or = 0.3 nM) or by intravenous infusion (> or = 0.5 microgram.kg-1.h-1), the Ro2 as well as the pancreatic secretion increased about two times higher than the basal values. With secretin administration, it was found that 1) an inverse relationship between red blood cell velocity and intravascular Hb concentration held and thus 2) [HbO2] inflow was maintained within the basal level (i.e., 200-700 fmol/s). Furthermore, 3) the elevation of Ro2 from single microvessels was accomplished by the increased O2 extraction instead of the increased O2 supply in the microvessels.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献