Affiliation:
1. Department of Medicine, Medical University of South Carolina,Charleston, USA.
Abstract
The purpose of this study was to examine the effects of anisosmotic stress on adult mammalian cardiac muscle cell (cardiocyte) size. Cardiocyte size and sarcomere length were measured in cardiocytes isolated from 10 normal rats and 10 normal cats. Superfusate osmolarity was decreased from 300 +/- 6 to 130 +/- 5 mosM and increased to 630 +/- 8 mosM. Cardiocyte size and sarcomere length increased progressively when osmolarity was decreased, and there were no significant differences between cat and rat cardiocytes with respect to percent change in cardiocyte area or diameter; however, there were significant differences in cardiocyte length (2.8 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05) and sarcomere length (3.3 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05). To determine whether these species-dependent differences in length were related to diastolic interaction of the contractile elements or differences in relative passive stiffness, cardiocytes were subjected to the osmolarity gradient 1) during treatment with 7 mM 2,3-butanedione monoxime (BDM), which inhibits cross-bridge interaction, or 2) after pretreatment with 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA), a bivalent Ca2+ chelator. Treatment with EGTA or BDM abolished the differences between cat and rat cardiocytes. Species-dependent differences therefore appeared to be related to the degree of diastolic cross-bridge association and not differences in relative passive stiffness. In conclusion, the osmolarity vs. cell size relation is useful in assessing the cardiocyte response to anisosmotic stress and may in future studies be useful in assessing changes in relative passive cardiocyte stiffness produced by pathological processes.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献