Hypertension, cardiac hypertrophy, and neurohumoral activity in a new animal model of obesity

Author:

Carroll J. F.1,Dwyer T. M.1,Grady A. W.1,Reinhart G. A.1,Montani J. P.1,Cockrell K.1,Meydrech E. F.1,Mizelle H. L.1

Affiliation:

1. Department of Physiology and Biophysics, University of MississippiMedical Center, Jackson 39216-4505, USA.

Abstract

Although obesity is a major risk factor for morbidity and mortality, the mechanisms mediating cardiovascular abnormalities in response to weight gain are unclear. One reason for the paucity of information in this area is the lack of appropriate animal models for the study of human obesity. Therefore, the goal of the present study was to develop a small animal model of dietary-induced obesity that mimics many of the characteristics of human obesity. We studied female New Zealand White rabbits fed either a normal (n = 17) or high-fat diet (n = 15) and examined the cardiovascular consequences of obesity, including changes in blood pressure, humoral activation, and end-organ effects such as cardiac hypertrophy. After 12 wk, rabbits on the high-fat diet were 46% heavier than their lean counterparts (5.49 +/- 0.09 vs. 3.77 +/- 0.06 kg, respectively; P = 0.0001). Obese rabbits had higher resting heart rates than lean rabbits (220 +/- 7 vs. 177 +/- 6 beats/min; P = 0.0001) and developed hypertension (96 +/- 2 vs. 85 +/- 1 mmHg; P = 0.0001), hyperinsulinemia (32.5 +/- 3.4 vs. 15.5 +/- 1.0 microU/ml; P = 0.0001), hyperglycemia (162.4 +/- 2.9 vs. 141.9 +/- 2.7 mg/dl; P = 0.0001), and elevated triglycerides (102.3 +/- 9.1 vs. 48.5 +/- 4.0 mg/dl; P = 0.0001). Obese rabbits also developed cardiac hypertrophy, as evidenced by left ventricular (LV) dry weights that were 52% greater in obese than in lean rabbits (P = 0.0003). In addition, LV total protein was increased in proportion to the increase in LV weight. The results of this study suggest that rabbits fed a high-fat diet for a period of 12 wk develop many of the characteristics of human obesity. The obese rabbit should provide a small and relatively inexpensive animal model to investigate mechanisms of obesity-related cardiovascular abnormalities.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3