Arginine analogues inhibit responses mediated by ATP-sensitive K+ channels

Author:

Kontos H. A.1,Wei E. P.1

Affiliation:

1. Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 29298, USA.

Abstract

Because arginine analogues have been reported to block the vasodilator response to hypercapnia, we investigated the effect of nitro-L-arginine (L-NNA) on the dilation of pial arterioles to arterial hypercapnia induced by inhalation of 3, 5, and 7% CO2 in anesthetized cats equipped with cranial windows. L-NNA at 250 microM, but not at lower concentrations, significantly reduced hypercapnia-induced dilation. This effect could be reversed by L-arginine. However, hypercapnic hyperemia is not the result of increased guanosine 3',5'-cyclic monophosphate via the usual NO-mediated activation of guanylate cyclase, because application of LY-83583, which blocks guanylate cyclase, did not alter the vessel response to CO2. L-NNA at 250 microM also abolished the pial arteriolar dilation in response to cromakalim, minoxidil, and pinacidil, three known openers of ATP-sensitive K+ channels, and this effect could be reversed by L-arginine. Application of glyburide, which blocks ATP-sensitive K+ channels, also reduced the response to CO2. Subsequent application of L-NNA in these experiments had no additional effect. Vasodilation induced by sodium nitroprusside and 3-morpholinosydnonimine, two known NO donors, was unaffected by glyburide. NG-monomethyl-L-arginine had effects similar to those of L-NNA in the cat and rat at concentrations as low as 20 microM. Our findings suggest that arginine analogues inhibit hypercapnic vasodilation by blocking ATP-sensitive K+ channels, independently of activation of guanylate cyclase via increased production of NO. Furthermore, the data suggest that ATP-sensitive K+ channels may have an arginine site that influences their function.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3