Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells

Author:

Aiello E. A.1,Clement-Chomienne O.1,Sontag D. P.1,Walsh M. P.1,Cole W. C.1

Affiliation:

1. Smooth Muscle Research Group, Faculty of Medicine, University ofCalgary, Alberta, Canada.

Abstract

The effect of protein kinase C (PKC) activation on 4-aminopyridine (4-AP)-sensitive delayed rectifier current (IdK) was studied in isolated rabbit portal vein smooth muscle cells by use of standard whole cell voltage clamp. The effects of the phorbol ester, 4 beta-phorbol 12,13-dibutyrate (PdBu, 100 nM) and diacylglycerol analogues, 1,2-dioctanoyl-sn-glycerol (1,2-diC8, 10 microM) and 1,3-dioctanoyl-sn-glycerol (1,3-diC8, 10 microM), on macroscopic whole cell IdK were assessed in myocytes dialyzed with 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and 5 mM ATP (20-22 degrees C). Activation of PKC by 1,2-diC8 or PdBu caused a decline in IdK that was reversed with washout of drug. 1,2-diC8 had no effect on outward current present after exposure to 4-AP (20 mM). The inactive analogue, 1,3-diC8, did not affect IdK, but subsequent exposure to the active analogue, 1,2-diC8, caused a marked depression of the current. The inhibition of IdK by 1,2-diC8 was significantly reduced by intracellular dialysis with the inhibitors of PKC, chelerythrine (50 microM) and calphostin C (1 microM). Substitution of extracellular Ca2+ with Mg2+ in the presence of 10 mM intracellular BAPTA did not affect the suppression of IdK by 1,2-diC8, indicating the involvement of a Ca(2+)-independent isoform of PKC. This study suggests a novel signal transduction mechanism for inhibition of 4-AP-sensitive IdK involving a phosphotransferase reaction catalyzed by PKC in vascular smooth muscle myocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3