Contribution of Na+/Ca2+ exchange to action potential of human atrial myocytes

Author:

Benardeau A.1,Hatem S. N.1,Rucker-Martin C.1,Le Grand B.1,Mace L.1,Dervanian P.1,Mercadier J. J.1,Coraboeuf E.1

Affiliation:

1. Laboratoire de Cardiologie Moleculaire et Cellulaire, Universite deParis XI-Centre National de la Recherche Scientifique Unite de RechercheAssociee 1159, Hopital Marie Lannelongue, Le Plessis Robinson,France.

Abstract

The Ca2+ dye indo 1 was used to record internal Ca2+ (Cai) transients in order to investigate the role of the Na+/Ca2+ exchange current (INa/Ca) in whole cell patch-clamped human atrial myocytes After the activation of the L-type Ca2+ current by test pulses (20 ms) at +20 mV, a tail current (I(tail)) was activated at a holding potential of -80 mV with a density of -1.29 +/- 0.06 pA/pF. The time course of I(tail) followed that of Cai transients I(tail) was suppressed by dialyzing cells with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, applying 5 mM caffeine, or substituting external Na+ with Li+, indicating that this current was mainly generated by INa/Ca. Two types of action potential were recorded: type A, which is characterized by a narrow early plateau followed by a late low plateau phase, and type B, which is characterized by a small initial peak followed by a prolonged high plateau phase. Type B action potentials were found in larger cells than type A action potentials (membrane capacitance 81.8 +/- 4.5 and 122.4 +/- 7.0 pF in types A and B, respectively, P < 0.001). Substitution of external Na+ with Li+ shortened the late plateau of the type A action potential and the prolonged plateau of the type B action potential. Suppression of Cai transients by caffeine shortens the late part of both types of action potentials, whereas its lengthening effect on the initial phase of action potentials can result from several different mechanisms. The beat-to-beat dependent relationship between Cai transients and action potentials could be mediated by Ina/Ca- Delayed afterdepolarizations were present in a significant proportion of atrial myocytes in our experimental conditions. They were reversibly suppressed by Li+ substitution for Na+, suggesting that they are generated by INa/Ca. We conclude that INa/Ca plays a major role in the development of action potentials and delayed afterdepolarizations in isolated human atrial myocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3