Tissue specific expression of vascular smooth muscle angiotensin II receptor subtypes during ovine pregnancy

Author:

Cox B. E.1,Rosenfeld C. R.1,Kalinyak J. E.1,Magness R. R.1,Shaul P. W.1

Affiliation:

1. Department of Pediatrics, University of Texas Southwestern MedicalCenter, Dallas 75235, USA.

Abstract

Uteroplacentral responses to infused angiotensin II (ANG II) are less than those elicited by systemic vasculature. This does not reflect ANG II receptor (AT) downregulation but may reflect differences in AT-receptor subtypes expressed. We examined AT-receptor subtypes in smooth muscle (SM) from uterine (UA), mesenteric, renal, and mammary arteries and aorta from nulliparous (n = 12), pregnant (n = 18; 105-140 days, term = 145 days), postpartum (n = 5; 6-9 days after delivery), and nonpregnant parous (n = 14) ewes by assessing displacement of 125I-labeled ANG II binding by [Sar1, Ile8]ANG II (AT1 and AT2), losartan (AT1) PD-123319 (AT2), and CGP-42112A (AT2). AT2 receptors accounted for 75-90% of total binding in UA. Except for mammary arteries, other arteries expressed only AT1 receptors. Receptor subtype expression was not altered by reproductive state in any artery studied. With the use of autoradiography, AT2 receptors appear to predominate in media of small intramyometrial arteries, whereas AT1 receptors predominate in the luminal portion. We therefore determined which subtype mediates endothelium-derived ANG II-induced increases in UA PGI2 synthesis during pregnancy. ANG II (0.05 microM) increased PGI2 synthesis 62%, from 214 +/- 13 to 346 +/- 23 pg.mg-1.h-1 (P < 0.05). Losartan (1.0 microM) inhibited the rise in PGI2 (257 +/- 24 vs. 238 +/- 25 pg.mg-1.h-1), whereas 1.0 microM PD-123319 had no effect (231 +/- 23 vs. 337 +/- 31 pg.mg-1.h-1; P < 0.05). AT2 receptors do not mediate ANG II-induced vasoconstriction, thus differences in uteroplacental and systemic sensitivity to ANG II may reflect predominance of AT2 receptors in UASM and ANG II-induced increases in UA prostacyclin synthesis by endothelial AT1 receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3