Transport and metabolism of L-glutamate during oxygenation, anoxia, and reoxygenation of rat cardiac myocytes

Author:

Dinkelborg L. M.1,Kinne R. K.1,Grieshaber M. K.1

Affiliation:

1. Institut fur Zoophysiologie, Lehrstuhl fur Stoffwechselphysiologie, Heinrich-Heine-Universitat, Dusseldorf, Germany.

Abstract

The intracellular glutamate concentration of oxygenated, isolated adult rat heart cells incubated with 0.15 mM glutamate amounts to 2.89 +/- 0.6 mM. Under these conditions the velocity of glutamate transport was 24.3 +/- 1.6 pmol.min-1.mg protein-1 and occurs via a high-affinity carrier characterized by an apparent affinity (K(m)) value of 0.18 +/- 0.03 mM. At high glutamate concentrations ( > 1mM) this high-affinity transport system is superimposed by additional uptake processes of a low affinity but a high capacity for glutamate. The 1.6-fold increased uptake of glutamate observed during 30 min of anoxic incubation of cardiomyocytes does not prevent an intracellular decrease in this amino acid to a concentration of 0.49 mM. After 15 min reoxygenation of cardiomyocytes the intracellular glutamate content increases to the control values of oxygenated cells. Only 2.4% of the glutamate increase after reoxygenation is due to the transport o glutamate from the incubation medium. The competitive inhibitor of transaminases, aminooxyacetate, prevents both the observed intracellular decrease in glutamate during anoxia and the increase in intracellular glutamate after reoxygenation of cardiomyocytes. Half of the amino groups needed for the synthesis of glutamate originate from intracellular alanine, which increases during anoxia and is metabolized during reoxygenation of cardiomyocytes. The velocity of the glutamate uptake of cardiomyocytes incubated in a medium containing 10 mM L-glutamate amounted to 728 +/- 140 pmol.min-1.mg protein-1. During anoxic incubation of cardiomyocytes at this high extracellular glutamate concentration, the intracellular glutamate breakdown may be compensated by a simultaneous uptake of this amino acid via the transport processes characterized by a high capacity

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3