Author:
Argaud Laurent,Gateau-Roesch Odile,Augeul Lionel,Couture-Lepetit Elisabeth,Loufouat Joseph,Gomez Ludovic,Robert Dominique,Ovize Michel
Abstract
Ca2+ is the main trigger for mitochondrial permeability transition pore opening, which plays a key role in cardiomyocyte death after ischemia-reperfusion. We investigated whether a reduced accumulation of mitochondrial Ca2+ might explain the attenuation of lethal reperfusion injury by postconditioning. Anesthetized New Zealand White rabbits underwent 30 min of ischemia, followed by either 240 (infarct size protocol) or 60 (mitochondria protocol) min of reperfusion. They received either no intervention (control), preconditioning by 5-min ischemia and 5-min reperfusion, postconditioning by four cycles of 1-min reperfusion and 1-min ischemia at the onset of reflow, or pharmacological inhibition of the transition pore opening by N-methyl-4-isoleucine-cyclosporin (NIM811; 5 mg/kg iv) given at reperfusion. Area at risk and infarct size were assessed by blue dye injection and triphenyltetrazolium chloride staining. Mitochondria were isolated from the risk region for measurement of 1) Ca2+ retention capacity (CRC), and 2) mitochondrial content of total (atomic absorption spectrometry) and ionized (potentiometric technique) calcium concentration. CRC averaged 0.73 ± 0.16 in control vs. 4.23 ± 0.17 μg Ca2+/mg proteins in shams ( P < 0.05). Postconditioning, preconditioning, or NIM811 significantly increased CRC ( P < 0.05 vs. control). In the control group, total and free mitochondrial calcium significantly increased to 2.39 ± 0.43 and 0.61 ± 0.10, respectively, vs. 1.42 ± 0.09 and 0.16 ± 0.01 μg Ca2+/mg in sham ( P < 0.05). Surprisingly, whereas total and ionized mitochondrial Ca2+ decreased in preconditioning, it significantly increased in postconditioning and NIM811 groups. These data suggest that retention of calcium within mitochondria may explain the decreased reperfusion injury in postconditioned (but not preconditioned) hearts.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献