Affiliation:
1. Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
2. Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
Abstract
The type 2a sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a key role in Ca2+ regulation in the heart. However, available techniques to study SERCA function are either cell destructive or lack sensitivity. The goal of this study was to develop an approach to selectively measure SERCA2a function in the cellular environment. The genetically encoded Ca2+ sensor R-CEPIA1er was used to measure the concentration of Ca2+ in the lumen of the endoplasmic reticulum (ER) ([Ca2+]ER) in HEK293 cells expressing human SERCA2a. Coexpression of the ER Ca2+ release channel ryanodine receptor (RyR2) created a Ca2+ release/reuptake system that mimicked aspects of cardiac myocyte Ca2+ handling. SERCA2a function was quantified from the rate of [Ca2+]ER refilling after ER Ca2+ depletion; then, ER Ca2+ leak was measured after SERCA inhibition. ER Ca2+ uptake and leak were analyzed as a function of [Ca2+]ER to determine maximum ER Ca2+ uptake rate and maximum ER Ca2+ load. The sensitivity of this assay was validated by analyzing effects of SERCA inhibitors, [ATP]/[ADP], oxidative stress, phospholamban, and a loss-of-function SERCA2a mutation. In addition, the feasibility of using R-CEPIA1er to study SERCA2a in a native system was evaluated by using in vivo gene delivery to express R-CEPIA1er in mouse hearts. After ventricular myocyte isolation, the same methodology used in HEK293 cells was applied to study endogenous SERCA2a. In conclusion, this new approach can be used as a sensitive screening tool to study the effect of different drugs, posttranslational modifications, and mutations on SERCA function. NEW & NOTEWORTHY The aim of this study was to develop a sensitive approach to selectively measure sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) function in the cellular environment. The newly developed Ca2+ sensor R-CEPIA1er was used to successfully analyze Ca2+ uptake mediated by recombinant and native cardiac SERCA. These results demonstrate that this new approach can be used as a powerful tool to study new mechanisms of Ca2+ pump regulation.
Funder
HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献