Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats

Author:

Patel Hemal H.,Gross Eric R.,Peart Jason N.,Hsu Anna K.,Gross Garrett J.

Abstract

Previous work from our laboratory has shown that the sarcolemmal KATP channel (sKATP) is required as a trigger for delayed cardioprotection upon exogenous opioid administration. We also established that the mitochondrial KATP (mKATP) channel is not required for triggering delayed δ-opioid-induced infarct size reduction. Because mechanistic differences have been found among δ-opioids and that due to ischemic preconditioning (IPC), we determined whether the triggering mechanism of delayed IPC-induced infarct size reduction involves either the sKATP or mKATP. Male Sprague-Dawley rats received either sham surgery or IPC (3- to 5-min cycles of ischemia and reperfusion) 24 h before being subjected to 30 min of ischemia and 2 h of reperfusion. Infarct size was determined and expressed as a percentage of the area at risk, with significance compared with sham reported at P ≤ 0.001. A subset of both sham and IPC-treated rats received either the selective sKATP channel antagonist, HMR-1098 (6 mg/kg), or the selective mKATP channel antagonist, 5-hydroxydeconoic acid (5-HD; 10 mg/kg), given 5 min before IPC. Rats subjected to IPC demonstrated a significant reduction in infarct size compared with sham (29.2 ± 4.7 vs. 59.3 ± 2.5%, respectively; P ≤ 0.001). Prior administration of HMR-1098, but not 5-HD, abolished IPC-induced infarct size reduction (48.8 ± 2.9 and 28.8 ± 4.0%, respectively; P ≤ 0.001). Furthermore, administration of HMR 24 h after IPC, before index ischemia, did not abrogate IPC-induced infarct size reduction (33.0 ± 5.0 vs. 29.2 ± 4.7%, respectively; P ≤ 0.001). These data suggest that the sKATP channel is required as a trigger but not a mediator for delayed IPC-induced infarct size reduction in rat hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3