Effect of local pH on interstitial fluid pressure

Author:

Gilanyi M.1,Kovach A. G.1

Affiliation:

1. Experimental Research Department, Semmelweis University Medical School, Budapest, Hungary.

Abstract

It has been suggested that electrostatic interactions between the electric charges on the interstitial gel matrix play a significant role in determining tissue elasticity and interstitial fluid pressure (IFP). The relationship between the net charge and IFP, however, has not been adequately established. Our purpose was to explore the net electric charge-IFP relationship, and in vivo experiments were performed to test its validity. IFP was measured in the subcutaneous tissue of anesthetized rats with the chronically implanted capsule method, and the acid-base status in blood and interstitial fluid was monitored. The net charge, which can be varied by pH, was altered by electrolysis procedure. H+ and OH- generated inside the capsule caused transient and dose-dependent IFP responses. The curve, describing the relationship between capsular pressure changes and amount of generated H+ and OH-, has a maximum at zero net charge, and the excess electric charge, either positive or negative, results in a significant decrease in capsular pressure in accordance with the hypothesis. The time course, as well as the dose dependency, of IFP suggests that the subcutaneous tissue gel in control condition has slightly positive net charge.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3