Vascular viscoelasticity of perfused rat hindquarters

Author:

Chihara E.1,Morimoto T.1,Shigemi K.1,Natsuyama T.1,Hashimoto S.1

Affiliation:

1. Department of Physiology and Anesthesiology, Kyoto Prefectural University of Medicine, Japan.

Abstract

To determine viscoelastic features of the rat hindquarters vasculature, we measured pressure-volume curves. Male Wistar rats were transected at the lumbar level, and the perfused hindquarters were oxygenated with a hollow fiber artificial lung. The blood volume was measured by counting 51Cr-labeled red cells led to a gamma counter through an extracorporeal circuit at a constant rate. With continuous monitoring of the venous pressure and circulating blood volume, saline was infused into the circuit from a venous branch for 5 min [1.2 +/- 0.3% (SD) of tissue weight] followed by a 10-min recovery phase. In the recovery phase, the venous pressure promptly declined to the preinfusion level, whereas the circulating blood volume decreased more slowly. This implied vascular stress relaxation of the hindquarters. Maxwell's viscoelastic model, consisting of a spring component and a viscous component, was applied to analyze the venous pressure-volume diagram. With a curve-fitting method, the calculated vascular compliance and relaxation time (a time constant of stress relaxation) were 1.31 +/- 0.14 ml.mmHg-1.kg-1 and 15.7 +/- 4.0 min (means +/- SE), respectively. The value of compliance of the hindquarters was smaller than those of visceral organs reported. In addition, the value for relaxation time suggests that the viscous response of the vasculature simultaneously overlaps change in blood volume due to extravascular fluid shift during the postinfusion period.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3