New technique to completely isolate carotid sinus baroreceptor regions in rats

Author:

Shoukas A. A.1,Callahan C. A.1,Lash J. M.1,Haase E. B.1

Affiliation:

1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205.

Abstract

We developed a method by which we can completely isolate the carotid sinus baroreceptor regions in the rat. The carotid sinus baroreceptor region is exposed and, with the use of extra-fine forceps, a human hair is placed around and tied at the root of the bifurcation. This procedure occludes the external carotid artery and blood flow to the carotid body. An injector is then attached to a catheter in the common carotid artery. We introduce a cylindrical rubber plug into either the palentine or internal carotid artery. A second plug is introduced to occlude the other artery. In six of the eight rats studied, these procedures completely isolated the carotid sinus region. In those cases where a small leak persisted at a carotid sinus pressure of 180 mmHg, we introduced a small particle of the animal's own previously clotted blood. Carotid sinus pressure was either randomly changed between 40 and 180 mmHg in 20-mmHg increments or in sequential 20-mmHg steps from 40 to 180 mmHg while measuring the animal's pulsatile and mean blood pressures. Arterial pressure-carotid sinus pressure relationship indicates that there is a highly sigmoidal relationship between the two pressures. The peak gain of the carotid sinus reflex system had a range from 1.5 to 4.0 and a mean value of 2.07 +/- 0.08. Our data indicate that the rat exhibits a significant carotid sinus baroreceptor reflex response. This technique combined with other techniques will allow for the study of neural control of cardiovascular function in the rat.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3