Affiliation:
1. Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore 21224.
Abstract
A technique that allows the continuous measurement of mitochondrial free Ca2+ ([Ca2+]m) in a single living cardiac myocyte is described. It involves the introduction of the fluorescent chelating agent indo-1 into the cell by exposure to the acetoxymethyl ester, followed by selective quenching of the fluorescence of indo-1 in the cytosol by Mn2+. The identity of the remaining fluorescence due to intramitochondrial indo-1 is established by its resistance to treatment of the cell with digitonin at concentrations that release cytosolic but not mitochondrial enzymes and by the finding that ruthenium red and carbonyl cyanide p-trifluoromethoxyphenylhydrazone prevent its response to elevated cytosolic free Ca2+ ([Ca2+]c). [Ca2+]m is found to be low (less than 100 nM) in unstimulated cells and to rise in procedures that chronically elevate [Ca2+]c, such as Na+ replacement. The gradient [Ca2+]m/[Ca2+]c is less than unity at values of [Ca2+]c of less than 500 nM but rapidly increases at higher values of [Ca2+]c. Although there is no detectable increase in [Ca2+]m during a single electrical stimulation, [Ca2+]m increases up to 600 nM as the pacing frequency is raised to 4 Hz in the presence of norepinephrine; this increase occurs over the course of many contractions. It is concluded that these findings are consistent with an increase in [Ca2+]m acting as a signal to increase dehydrogenase activity, and hence flux through oxidative phosphorylation, in response to increased work loads.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
333 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献