Convergence of sympathetic, vagal, and other sensory inputs onto neurons in feline ventrolateral medulla

Author:

Blair R. W.1

Affiliation:

1. Department of Physiology and Biophysics, University of Oklahoma Health Sciences Center, Oklahoma City 73190.

Abstract

Responses of 80 neurons in rostral and caudal ventrolateral medulla to multiple sources of sensory input were assessed in cats anesthetized with alpha-chloralose. Sixty-one of eighty-one neurons (76%) were excited by stimulation of the stellate ganglion, and one neuron exhibited inhibition followed by excitation. In response to vagal stimulation, 12% of the neurons were excited and 29% inhibited. Vagal stimulation reduced the responses of 13 of 39 (33%) neurons to sympathetic stimulation. Overall, one-third of the neurons responded to both sympathetic and vagal stimulation. There was no difference in proportion of responsive neurons in rostral versus caudal ventrolateral reticular formation. Cells were also tested for auditory, visual, and natural somatic stimuli. Ten percent of the neurons responded to all five stimuli, and another 25% responded to four stimuli. Twelve percent of neurons were unresponsive to any stimulus. Twenty cells were tested for responses to changes in blood pressure elicited with phenylephrine and nitroglycerin. Seven neurons were inhibited by increases or excited by decreases in pressure, four had the opposite responses, and nine were unresponsive. In general, blood pressure-sensitive cells exhibited comparable convergence of other inputs as the overall cell population. However, three times as many pressure-insensitive neurons received vagal input as did pressure sensitive neurons. In conclusion, neurons in the ventrolateral medulla, including the vasopressor and vasodepressor regions, receive and integrate convergent input from multiple sensory origins. Since the regions of the reticular formation studied are functionally heterogeneous, the precise functions of these neurons are not known.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3