Trabecular smooth muscle modulates the capacitor function of the penis. Studies on a rabbit model

Author:

Saenz de Tejada I.1,Moroukian P.1,Tessier J.1,Kim J. J.1,Goldstein I.1,Frohrib D.1

Affiliation:

1. Department of Urology, Boston University Medical Center, Massachusetts 02118.

Abstract

We investigated the role of trabecular smooth muscle tone in regulation of intracavernosal pressure, venous outflow resistance, and penile capacitance. In an isolated rabbit whole penis model, corpora cavernosa were infused with either contracting (high K(+)-norepinephrine combination) or relaxing (no added Ca(2+)-papaverine combination) physiological salt solutions while intracavernosal pressure was recorded. An infusion pump regulated by an intracavernosal pressure feedback mechanism enabled the measurement of flow necessary to maintain intracavernosal pressures at 30, 60, 90, 120, and 150 mmHg under steady-state conditions (inflow = outflow). These experiments allowed resistance to outflow from corpora to be calculated when trabecular smooth muscle was either constricted or relaxed. Decay in intracavernosal pressure over time from various predetermined intracavernosal pressures (150, 120, 90, 60, and 30 mmHg) was studied under conditions of zero inflow following contraction or relaxation of trabecular smooth muscle. This permitted calculation of the time constant, which together with the outflow resistance, permitted the calculation of penile capacitance. When smooth muscle is relaxed, venous outflow resistance is high, constant, and independent of intracavernosal pressure. Furthermore, relaxation of smooth muscle allows expansion of corpora with accumulation of volume under pressure, enabling the penis to act as a capacitor. This capacitor function is limited in the presence of constant high outflow resistance by stiffness of the fibroelastic elements of penis, tunica, and fibroelastic frame, which exhibit nonlinear deflection trends. Analysis of these variables has led us to propose a model for penile erection.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3