Caveolin-1 and caveolin-3 form heterooligomeric complexes in atrial cardiac myocytes that are required for doxorubicin-induced apoptosis

Author:

Volonte Daniela,McTiernan Charles F.,Drab Marek,Kasper Michael,Galbiati Ferruccio

Abstract

Caveolae are 50- to 100-nm invaginations of the plasma membrane. Caveolins are the structural protein components of caveolar membranes. The caveolin gene family is composed of three members: caveolin-1, caveolin-2, and caveolin-3. Caveolin-1 and caveolin-2 are coexpressed in many cell types, including adipocytes, endothelial cells, epithelial cells, and fibroblasts. In contrast, caveolin-3 expression is essentially restricted to skeletal and smooth muscle cells as well as cardiac myocytes. While the interaction between caveolin-1 and caveolin-2 has been documented previously, the reciprocal interaction between endogenous caveolin-1 and caveolin-3 and their functional role in cell types expressing both isoforms have yet to be identified. Here we demonstrate for the first time that caveolin-1 and caveolin-3 are coexpressed in mouse and rat cardiac myocytes of the atria but not ventricles. We also found that caveolin-1 and caveolin-3 can interact and form heterooligomeric complexes in this cell type. Doxorubicin is an effective anticancer agent, but its use is limited by the possible development of cardiotoxicity. Using caveolin-1- and caveolin-3-null mice, we show that both caveolin-1 and caveolin-3 expression are required for doxorubicin-induced apoptosis in the atria through activation of caspase 3. Together, these results bring new insight into the functional role of caveolae and suggest that caveolin-1/caveolin-3 heterooligomeric complexes may play a key role in chemotherapy-induced cardiotoxicity in the atria.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3