Role of Pyk2 in cardiac arrhythmogenesis

Author:

Lang Di1,Glukhov Alexey V.1,Efimova Tatiana2,Efimov Igor R.1

Affiliation:

1. Department of Biomedical Engineering, Washington University, St. Louis, Missouri; and

2. Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri

Abstract

Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein kinase regulated by intracellular Ca2+, CaMK, and PKC and can be activated by different stress signals involved in heart failure. However, Pyk2 has not been investigated in the human heart, and the functional role of Pyk2 signaling at the whole heart level has not been elucidated. We hypothesize that Ca2+-dependent activation of Pyk2 is involved in cardiac electrophysiology. We examined the expression of Pyk2 in nonfailing versus ischemic and nonischemic failing human hearts ( n = 6 hearts/group). To investigate Pyk2 function, we optically mapped perfused hearts from wild-type (WT; n = 7) and knockout (Pyk2−/−; n = 8) mice during autonomic stimulation. Experiments were done in control mice and after 1 wk of transverse aortic constriction. We used the Illumina beadarray approach for transcriptional profiling of WT and Pyk2−/− mouse ventricles. Western blot analysis revealed a doubling of Pyk2 activation in nonischemic failing versus nonfailing human hearts. In mouse hearts, we observed a much higher probability of ventricular tachyarrhythmia during ACh perfusion in Pyk2−/− versus WT mice. Parasympathetic stimulation resulted in a dose-dependent decrease of atrial action potential duration (APD) in both WT and Pyk2−/− mice, whereas in ventricles it induced APD shortening in Pyk2−/− mice but not in WT mice. Deficiency of Pyk2 abolished ACh-induced prolongation of atrioventricular delay in Pyk2−/− mouse hearts but did not affect heart rate. Lower mRNA and protein levels of sarco(endo)plasmic reticulum Ca2+-ATPase 2 and higher mRNA levels of Na+/Ca2+ exchanger 1 were detected in Pyk2−/− hearts compared with WT hearts. The transverse aortic constriction protocol did not change the phenotype. In conclusion, our results indicate a protective role of Pyk2 with respect to ventricular tachyarrhythmia during parasympathetic stimulation by regulation of gene expression related to Ca2+ handling. We hypothesize that activation of Pyk2 in the human heart during heart failure may contribute to protection against arrhythmia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3