Kinin B1receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms

Author:

Morand-Contant Marielle1,Anand-Srivastava Madhu B.1,Couture Réjean1

Affiliation:

1. Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7

Abstract

Oxidative stress upregulates the kinin B1receptor (B1R) in diabetes and hypertension. Since angiotensin II (ANG II) and endothelin-1 (ET-1) are increased in these disorders, this study aims at determining the role of these two prooxidative peptides in B1R expression in rat vascular smooth muscle cells (VSMC). In the A10 cell line and aortic VSMC, ANG II enhanced B1R protein expression in a concentration- and time-dependent manner (maximal at 1 μM and 6 h). In A10 cells, ANG II (1 μM) also increased B1R mRNA expression at 3 h and the activation of induced B1R with the agonist [Sar-d-Phe8]-des-Arg9-BK (10 nM, 5 min) significantly enhanced mitogen -activated protein kinase (MAPK1/2) phosphorylation. The enhancing effect of ANG II on B1R protein expression in A10 cells was normalized by the AT1(losartan) but not by the AT2(PD123319) receptor antagonist. Furthermore, it was inhibited by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and NF-κB (MG132) but not of MAPK (PD098059). Whereas the ETBreceptor antagonist (BQ788) had no effect, the ETAreceptor antagonist (BQ123) blocked the effect of ANG II at 6–8 h but not at an early time point. BQ123 and BQ788 also blocked the increasing effect of ET-1 on B1R protein expression. Antioxidants ( N-acetyl-l-cysteine and diphenyleneiodonium) abolished ANG II- and ET-1-increased B1R protein expression. In conclusion, B1R induction is linked to oxidative stress and activation of phosphatidylinositol 3-kinase and NF-κB. The newly synthesized B1R is functional and can activate MAPK signaling in VSMC. The effect of ANG II is mediated by the AT1receptor and the subsequent activation of ETAthrough ET-1 release.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3