Cholinergic vasodilation of intracerebral arterioles in rats

Author:

Dacey R. G.1,Bassett J. E.1

Affiliation:

1. Department of Neurological Surgery, University of Washington,Harborview Medical Center, Seattle 98104.

Abstract

Much morphological and physiological evidence indicates that cholinergic mechanisms play a significant role in the control of cerebral blood flow. Despite in situ data suggesting that an intrinsic cholinergic mechanism produces vasodilation in the intracerebral microcirculation, there is no direct information on the effect of acetylcholine (ACh) on intracerebral arterioles. We investigated cholinergic mechanisms in isolated perfused intracerebral arterioles from pentobarbital sodium-anesthetized Sprague-Dawley rats. In arterioles with resting diameters of 46.8 +/- 6.6 microns (mean +/- SE) ACh produced no significant dilation at pH 7.30. At pH 7.60, however, a significant dose-dependent dilation to a maximum of 119.0 +/- 1.0% of control diameter was observed. Carbachol, a long-acting cholinergic agonist, similarly failed to dilate vessels at pH 7.30 but significantly dilated vessels at pH 7.60. Prostaglandin F2 alpha produced a maximum contraction to 68.3 +/- 2.7% of control diameter (n = 8). ACh at concentrations of 10(-4) and 2 X 10(-4) M induced a significant dilation of this prostaglandin-induced contraction. In vessels similarly preconstricted with serotonin, 10(-4) M ACh produced significant dilation. Atropine, having no effect on vessel diameter when administered alone, blocked cholinergic vasodilation of intracerebral arterioles at pH 7.60. Attempts at endothelial removal, although successful in eliminating endothelial cells from the preparation, significantly impaired smooth muscle contractility. ACh has no significant effect on the spontaneous cerebrovascular tone in this preparation, but in vessels preconstricted by a variety of means it produced vasodilation mediated by atropine sensitive receptors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3