Effects of ventricular pacing on finite deformation in canine left ventricles

Author:

Waldman L. K.,Covell J. W.

Abstract

Despite the fact that myofibers would be expected to shorten only along their axes, there is now evidence for substantial deformation away from the local myofiber direction in the left ventricle. To determine if the principal directions of deformation could be altered by a physiological stimulus, we examined local three-dimensional finite deformation in the anterior free wall of the left ventricle during normal atrial activation (AA) and, subsequently, during epicardial ventricular pacing (VP) at the site of deformation measurement in open-chest anesthetized dogs. An analysis of variance by repeated measures revealed the following significant changes (P less than or equal to 0.05) in the overall (average of epicardial and endocardial data) strain variables at end systole. Circumferential strain increased from -0.07 (AA) to 0.14 (VP), radial strain decreased from 0.16 (AA) to 0.01 (VP), shear in the tangent plane of the local epicardium decreased from 0.04 (AA) to -0.02 (VP), shear in the plane of the longitudinal and radial coordinates decreased from 0.03 (AA) to -0.03 (VP). Neither the first (greatest shortening) nor the third (greatest lengthening) principal strain changed significantly, but the direction of the first principal axis of deformation projected on the epicardial tangent plane changed from -51 degrees (AA) to -80 degrees (VP) from circumferential. In addition, substantial tipping of the plane of principal shortening away from the epicardial tangent plane was observed, particularly with ventricular pacing. These data indicate that the principal directions of deformation can be altered substantially by changing the activation sequence. In conjunction with the observed shearing deformations, particularly near the endocardium, they support the concept that locally the heart wall deforms as a unit with significant transmural tethering.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3