Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress

Author:

Olgac Ufuk,Kurtcuoglu Vartan,Poulikakos Dimos

Abstract

The work herein represents a novel approach for the modeling of low-density lipoprotein (LDL) transport from the artery lumen into the arterial wall, taking into account the effects of local wall shear stress (WSS) on the endothelial cell layer and its pathways of volume and solute flux. We have simulated LDL transport in an axisymmetric representation of a stenosed coronary artery, where the endothelium is represented by a three-pore model that takes into account the contributions of the vesicular pathway, normal junctions, and leaky junctions also employing the local WSS to yield the overall volume and solute flux. The fraction of leaky junctions is calculated as a function of the local WSS based on published experimental data and is used in conjunction with the pore theory to determine the transport properties of this pathway. We have found elevated levels of solute flux at low shear stress regions because of the presence of a larger number of leaky junctions compared with high shear stress regions. Accordingly, we were able to observe high LDL concentrations in the arterial wall in these low shear stress regions despite increased filtration velocity, indicating that the increase in filtration velocity is not sufficient for the convective removal of LDL.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3