Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α

Author:

Petkova-Kirova Polina S.12,London Barry3,Salama Guy3,Rasmusson Randall L.4,Bondarenko Vladimir E.5

Affiliation:

1. Department of Cell Biology and Physiology and

2. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria

3. Cardiovascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania;

4. Center for Cellular and Systems Electrophysiology and Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York; and

5. Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia

Abstract

Transgenic mice overexpressing tumor necrosis factor-α (TNF-α mice) possess many of the features of human heart failure, such as dilated cardiomyopathy, impaired Ca2+ handling, arrhythmias, and decreased survival. Although TNF-α mice have been studied extensively with a number of experimental methods, the mechanisms of heart failure are not completely understood. We created a mathematical model that reproduced experimentally observed changes in the action potential (AP) and Ca2+ handling of isolated TNF-α mice ventricular myocytes. To study the contribution of the differences in ion currents, AP, Ca2+ handling, and intercellular coupling to the development of arrhythmias in TNF-α mice, we further created several multicellular model tissues with combinations of wild-type (WT)/reduced gap junction conductance, WT/prolonged AP, and WT/decreased Na+ current ( INa) amplitude. All model tissues were examined for susceptibility to Ca2+ alternans, AP propagation block, and reentry. Our modeling results demonstrated that, similar to experimental data in TNF-α mice, Ca2+ alternans in TNF-α tissues developed at longer basic cycle lengths. The greater susceptibility to Ca2+ alternans was attributed to the prolonged AP, resulting in larger inactivation of INa, and to the decreased SR Ca2+ uptake and corresponding smaller SR Ca2+ load. Simulations demonstrated that AP prolongation induces an increased susceptibility to AP propagation block. Programmed stimulation of the model tissues with a premature impulse showed that reduced gap junction conduction increased the vulnerable window for initiation reentry, supporting the idea that reduced intercellular coupling is the major factor for reentrant arrhythmias in TNF-α mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3