Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension

Author:

Hilgers Rob H. P.,Webb R. Clinton

Abstract

Ca2+-activated K+ channels (KCa), in particular, the small and intermediate KCa (SKCa and IKCa, respectively) channels, are key players in endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation in small arteries. Hypertension is characterized by an endothelial dysfunction, possibly via reduced EDHF release and/or function. We hypothesize that during angiotensin II (14 days)-induced hypertension (ANG II-14d), the contribution of SKCa and IKCa channels in ACh-induced relaxations is reduced due to decreased expression of SKCa and IKCa channel proteins in rat small mesenteric arteries (MAs). Nitric oxide- and prostacyclin-independent vasorelaxation to ACh was similar in small MAs of sham-operated and ANG II-14d rats. Catalase had no inhibitory effects on these relaxations. The highly selective SKCa channel blocker UCL-1684 almost completely blocked these responses in MAs of sham-operated rats but partially in MAs of ANG II-14d rats. These changes were pressure dependent since UCL-1684 caused a greater inhibition in MAs of 1-day ANG II-treated normotensive rats compared with ANG II-14d rats. Expression levels of both mRNA and protein SK3 were significantly reduced in MAs of ANG II-14d rats. The IKCa channel blocker 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) resulted in comparable reductions in the relaxation responses to ACh in MAs of sham-operated and ANG II-14d rats. Relative mRNA expression levels of IK1 were significantly reduced in MAs of ANG II-14d rats, whereas protein levels of IK1 were not but tended to be lower in MAs of ANG II-14d rats. The findings demonstrate that EDHF-like responses are not compromised in a situation of reduced functional activity and expression of SK3 channels in small MAs of ANG II-induced hypertensive rats. The role of IK1 channels is less clear but might compensate for reduced SK3 activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3