Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury

Author:

Jacobi Jeanna,Sela Shifra,Cohen Hector I.,Chezar Judith,Kristal Batya

Abstract

Peripheral polymorphonuclear leukocytes (PMNL) in hemodialysis (HD) patients are primed, continually releasing and exposing the vascular endothelium to soluble factors such as reactive oxygen species and inflammatory mediators. To mimic the close proximity between PMNL and the endothelial monolayer and to monitor and characterize the influence of soluble mediators released from PMNL, we developed a novel cocultivation system using primary human umbilical vein endothelial cell (HUVEC) cultures and PMNL, with a sieve separating the two cell types to prevent direct adhesive effects. PMNL (106) from HD patients or from healthy normal controls were cocultivated with HUVEC (105) for 15 min, and endothelial cell injury was assessed by HUVEC morphology, cell detachment, and apoptosis. Proinflammatory changes were estimated by expression of HUVEC adhesion molecule P-selectin and by endothelial IL-8 and endothelial nitric oxide synthase mRNA. The levels of intracellular tissue factor reflected the procoagulant state, whereas NADPH oxidase activity served as an indicator for prooxidative changes in HUVEC. Mediators released from the primed PMNL triggered activation/dysfunction of endothelial cells, causing 1) an increase in endothelial cell detachment and apoptosis, 2) a proinflammatory state manifested by increased IL-8 mRNA expression and P-selectin on the endothelial surface, 3) activation of endothelial NADPH oxidase, 4) an increase in endothelial cell tissue factor that directly correlated with PMNL priming index, and 5) a decrease in endothelial nitric oxide synthase mRNA. Our data support a pathogenic link between PMNL priming and endothelial dysfunction, suggesting that PMNL priming is a potential new nontraditional risk factor for the development of atherosclerosis.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3